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The Dynamics of Two Coupled Rigid Bodies

R. Grossman*, P.S. Krishnaprasad**, and Jerrold E. Marsden***

;Abstract

In this paper we derive a Poisson bracket on the phase space so(3) x so(3)' x SO(3) such that
the dynamics of two three dimensional rigid bodies coupled by a ball and socket joint can be written
as a Hamiltonian system.

11. lntroducto

* In this paper we introduce a Poisson bracket on the phase space.

so(3)" x .o(3)" x SO(3),

Whvere so(3)" is the dual of the Lie algebra of SO(3), so that the dynaiks of two rigid bodies '
coupled by a ball and socket joint can be written a the Hamilitonian system H = {F,H) This ( v
sets the stage so that the stability and asymptotics of the system can be studied using the energy P TE

Casimir method as in Holm, Marsden, Ratiu and Weinstein (1985] and Krishnaprasad [1985], so that
chaotic solutions can be found using the Melnikov method such as in Holmes and Marsden [1983].
so that bifurcations of the system can be described using the techniques in Golubitsky and Stewart - -
[1986] and Lewis, Marsden and Ratiu [1986], and so that control issues can be studied, as in Sanchez l
de Alvarez [1986]. <: - I

The dynamics of planar coupled rigid bodies has been studied using similar ideas in Sreenath, 0
Krishnaprasad and Marsden [1986]. 5 0

J2. Kinematics

In this section we will derive the Lagrngian describing the free motion of two rigid bodieson/
coupled by a ball and socket joint. At time 0 we assume that the two coupled rigid bodies are in a. "t odes• ity Code
reference configuration denoted B • Fix an inertial frame and let Q denote a point in the reference -.....

configuration B . Let B, denote those points Q E B which belong to body I and let B2 denote . and/or
those points which belong to body 2. 0ctal
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The configuration at time 9 is determined by a smooth map
~q: 5 - - R ., Q - (Q, t.

We can also specify the configuration at time t as follows. First we specify the position of the joint
with respect to the inertia] frame Denote this as w(t). Fix a frame centered at the joint and parallel
to the inertial frame. With respect to this frame, the configuration of body 1 is determined as usual
by three Euler angles. The Euler angles determine the orientation of a body fixed frame relative to

I the spatial frame centered at the joint. Alternatively these two frames are related by an element
Al(t) E SO(3). Similarly the configuration of body 2 is determined by an element A2(t) E 50(3).

1We conclude that the configuration space is

C = SO(3) x 50(3) x R3

..- " and thatand t tq(Q,f) = A1()Q + w(t), forQ 2 B1

q(Q,t) = A2 (t)Q + w(t), for Q E B2(

We now proceed to compute the kinetic energy of the system. This requires that we keep track
of the centers of mas of the two bodies and the center of mass of the system relative to the fixed
inertial frame as well as the frame centered at the joint. Let m, and m 2 denote the msses of the
two bodies and let m denote the total mass. Let SO denote the center of mass of body I in the
reference configuration relative to the inertial frame and let S2 denote the center of mass for body
2. Let ri(t) denote the center of mass of body I at time t relative to the inertial frame and let r2()
denote the center of mas for body 2. Let &I(I) and 82(t) denote the center of mass of bodies I and
2, respectively, measured with respect to the frame centered at the joint. Finaly let a(t) denote the
center of mass of the ensemble measured with respect to the inertial frame. Figures I and 2 show

-f.. the relationships of these quantites. For example the following equations can be read off from the
figures

s() = A ()S r (i) = w(t) + el(t) (2.2)
82(t).= A2()S r2(1) = w(t) + 82(t)

-SS
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Given two vectors v = (vI,v7, 0) and s, = (u1,w2, w3), denote their inner product relative to
the standard Euclidean structure as $(V, W) = 5 i,

Sal

and the corresponding norm by Ii. Let p(Q) denote the mam measure of the ensemble in the
reference configuration. The kinetic energy KE of the configuration is

V KE = j t1 do(Q)

- 81jA1(9)Q + w(t)12 do(Q) + (1 ~- 2)

, ](All k Q + ') . (4j.Q' + ib) di,(Q) + (1 2) (2.3)

-{J Q&Q' d;,(Q)} A'5A,1 + f2g dp(Q)} u,,.i9
2 1 21 ,)

+{~~ 'd~)}Ah +{ i Q1 dp(Q)} A + (1 2).

Let 11 denote the coefficient of inertia matrix of body 1, defined by

* (Ix)" = Q ' Qj du(Q), for i,j= 1,2,3. (2.4)

The coefficient of inertia 12 of body 2 is defined similarly. Using these definitions and the defintion
of the center of mass, we can rewrite the expression above as

KE = Itr (AlhAI) + L-(u.,1 )+4m 1(A1S,t) + (1 -- 2)(25
2 2 (2.5)
t= tr (AIIA') + m I(AjISj, t) + (1 - 2)+ =-(t, t,)

22

The Lagrangian is simply the total kinetic energy. To summarize, the velocity phase space for
/-' our system ts TSO(3) x TSO(3) x TR3 and the Lagrangian is given by (2.5).

13. Reduction by the Euclidean Group

Consider the following action of an element g of the Euclidean group E(3)

i0~ 1

where A E SO(3) and b E R, on a point (A1 ,A 2,w) in the configuration space C:

• (A., A2 , w) = (BA1 , BA,, Bw + b). (3.1)

It is easy to check that the Lagrangian (2.5) is invariant under this action. Since the Lagrangian
ia invariant under E(3) , so is the Hamiltonian. The purpose of this section is to perform the
reduction by this group. This will be done in two steps. First we will reduce by R3- this accounts
fbr conservation of total linear momentum. Then we will reduce by SO(); this accounts for
conservatic.n of total angular momentum.

We begin by rewriting the Lagragian in term of the linear momentum p. Using (2.2), we can
write the total linear momentum as

p = ma = m ii 3 m.2)

a Mik + m1A1SO, + M2A424~(2

a' 3
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It is convenient to introduce the expresion

al=~ 2 -2A S D. (3.3a)M= +

and write

m M (3.3b)
"'=0-p

Substituting (3.3a and b) into (2.5) and simpliFying gives the following form for the Lagangian

A 1,
L = -tr (A1 1 A) + tr (A71 2A2 ) + -Lm(pP) - M(P). (34)2 2m '2~

The Legendre trasformation FL induces a ,ymplectic structure on

TC = TO(3) x TSO(3) x TR 3

and the tangent of the action of R 3 on C (see (3.1)) is symplectic. To verify this statement and the
ones that follow, swe Abraham and Marsden [1978], chapters 3 and 4. The momentum map for this
action is given by

J : SO(3) x TSO(3) x 77L - R 3"

(Ai.Ai,A 2,A2 ,w,) W - p.

The corresponding reduced space at p is:
.

(J -1 (p)) /R 3 TSO(3) x TSO(3).

Fom (3 4) we see that the LagrangiLn on the reduced spare is simply

L tr (AI11 A1I) + 2-tr (A212 A2) - F IiAISJ+ 224 -(35M I I m (3.5)

Since p is constant, we can drop the last term. This completes the first stage of the reduction.
We now perform the reduction corresponding to conservation of total angular momentum. This

time we use Poisson reduction; see Krishnaprasad and Marsden [1986] for a summary of Poisson
reduction. Consider the map

A : 7" (S0(3) x S0(3)) - ?o(3) x so(3) ° x S0(3) (36)

Or.,A, rA.,) - (l, 172 ,A) = (7-LA,rA,7LAWA,,A-'A:).

* We will define a Poisson bracket on the target space so that the map A becomes a Poisson map with
respect to this bracket and the canonical bracket on the cotangent bundle 7" (SO(3) x SO(3)).

Introduce the body angular velocities of each of the bodies

"2•..'.01 = A ';1Aj
03 =A'A1  (3.7)

where 6 is the linear map v f- x v on R 3. We will also need the moment of inertia J, of body I
given by

= J, qOQ' do(Q), (3.8).. ~~ (3)-8)-ifi

B, mIm o - (Q')) do(Q), if i =j.

The moment of inertia J2 of body 2 is defned in a smilar way.

'4
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In order to derive an explicit exprssion for the angular momenta of the system, it is belpful
to write the total kinetic energy as a quadratic form. After a certain amount of algebra, the total
kinetic energy (3.5), can be written

(flj,,) n, -) 0 2 ), (3.9a)

Le 3dnoeth ati

I, M (3 m9b)

fnfn\

Let i denote the matrix
L - I .3-I (3.1c)

2

nom the Leendre transformation applied to Lanians quadratic in the velocities, the angular
Wmomenta ae found to be

"1= C). (3.9d)

4 The inertial orientation matrices A,, A2 determine the relative orientation matrix

{ GA = A' A . (3.10)

'i Using the definitions (3.7) -(3.10), we can rewrite the La (i n (3.5) 0s
, ." " . . L = i D l -3 -' 1 3 .1

. osand conclude, usins the fact that tbe Lgragianis quadratic in the momenta, that the HamiltonianH (17,, ,A) is also given by (3.11).
We next derive the Poisson bracket on so(3) x so(3)" x SO(3). Given a function F on so(3)" x
2so(3) x SO(3), define a function FA on 7" (SO(3) x SO(3)) by

'*, tf - F o A. (312)

The canonical bracket on " (S0(3) x S(3)) is

VA, A) =DAFA -*,'- DA HA(3.13)+ D,,r. -F.&-D,HA..-
Using the chain rule, we can introduce a bracket on so(3)" x so(3)" x SO(3), so that A becomes
Poisson map. This is straghtforward but tedious. To ortanize the computation, it is helpful to note
the followingn facts.

AFact 1. -f(1A E 7A$(3), then
11 := 7-. LA • T = A'rA E so(3 (3.14)

Fact 2. Let HA(Al, ri, A2, r) be a function on 7" (S0(3) x S0(3)) and let . denote the func-
e.. tional derivative of HA With IMe~pCt 90 W1 .Then

Fact 3. Loet F(A , riA , w2) be a function on 7"s(Sa(3)sx S(3)), where we hae, by abuse ofm~sotation, written an element in the cotangent space at A, as (A,, wl). Then

,,, It is now straigh~tforward to combine these facts to see that the canonical bracket (3.13) may

,~(JAL, - A * . - A# -. ' u,

To um , we have- , A-A . , A



Theorem 1. (i) thib the canonical bracket on 7"(SO(3) x SO(3)) and the bracket (3.15) on

oo(3)" x so(3)" x SO(3), the map

A: 7(SO(3) x SO(3)) - oo(3f x .o(3f x SO(3)

Siven by (3.6) is a Poisson map. (ii) The dynamics on the reduced space is given by
P ={,H).

14. Further Remarks

1. We begin with a brief discussion of the Casimirs. Consider the momentum map

J : 7 (50(3) x S0(3)) - so(3)"
(RA, , A,) - (TRAIrA, + TRAA). (4.1)

The composition of this with the Casimir

C : so(3)" -. R

n - In12  (4.2)

produces a collective Hamiltonian on 7" (SO(3) x SO(3)) whose Hamiltonian vector field is tangent
to the G-orbits (see Guillemin and Sternberg [1980] or Holmes and Marsden [1983]) and therefore
induces a Casimir C on the space so(3)" x so(3)" x SO(3) via the Poisson map (3.6).

Tracing through the diagram shows that C = IU, + ADn2 1
2 ; and, hence, any function of the

form 0 (ID, + Al 2 12) is a Cuuimir for the bracket (3.15).

2. The symplectic leaves in the nine dimensional space so(3)" x so(3)" x SO(3) appear to be
eight dimensional (level sets of the function 113, + A13 12 ) and in the case of J = 0, (given by (4.1).)
the six dimensional space rSO(3); and, finally, if flj = 0,n2 = 0, a two dimensional space 52 of
trival equilbria. We expect to explore the geometry of these leaves and the other topics listed in the
introduction in a future publication.
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